Cytokinin activity increases stomatal density and transpiration rate in tomato

نویسندگان

  • Mika Farber
  • Ziv Attia
  • David Weiss
چکیده

Previous studies on cytokinin (CK) and drought have suggested that the hormone has positive and negative effects on plant adaptation to restrictive conditions. This study examined the effect of CK on transpiration, stomatal activity, and response to drought in tomato (Solanum lycopersicum) plants. Transgenic tomato plants overexpressing the Arabidopsis thaliana CK-degrading enzyme CK oxidase/dehydrogenase 3 (CKX3) maintained higher leaf water status under drought conditions due to reduced whole-plant transpiration. The reduced transpiration could be attributed to smaller leaf area and reduced stomatal density. CKX3-overexpressing plants contained fewer and larger pavement cells and fewer stomata per leaf area than wild-type plants. In addition, wild-type leaves treated with CK exhibited enhanced transpiration and had more pavement cells and increased numbers of stomata per leaf area than untreated leaves. Manipulation of CK levels did not affect stomatal movement or abscisic acid-induced stomatal closure. Moreover, we found no correlation between stomatal aperture and the activity of the CK-induced promoter Two-Component Signaling Sensor (TCS) in guard cells. Previous studies have shown that drought reduces CK levels, and we propose this to be a mechanism of adaptation to water deficiency: the reduced CK levels suppress growth and reduce stomatal density, both of which reduce transpiration, thereby increasing tolerance to prolonged drought conditions.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Effect on shoot water relations, and cytokinin and abscisic acid levels of inducing expression of a gene coding for isopentenyltransferase in roots of transgenic tobacco plants.

Heat shock (HS) at 40 degrees C was given to the root system of Nicotiana tabacum wild type (WT) and to HSIPT transgenic plants transformed with the bacterial cytokinin biosynthesis gene isopentenyltransferase (ipt) cloned behind the heat shock 70 promoter from Drosophila melanogaster. HS increased cytokinin concentrations in roots and leaves of transgenic plants. The effect was smaller in WT p...

متن کامل

The effect of root cooling on hormone content, leaf conductance and root hydraulic conductivity of durum wheat seedlings (Triticum durum L.).

Root cooling of 7-day-old wheat seedlings decreased root hydraulic conductivity causing a gradual loss of relative water content during 45 min (RWC). Subsequently (in 60 min), RWC became partially restored due to a decrease in transpiration linked to lower stomatal conductivity. The decrease in stomatal conductivity cannot be attributed to ABA-induced stomatal closure, since no increase in ABA ...

متن کامل

Diurnal Variations of Gas Exchange Characteristics in Leaves of Anise Hyssop (Agastache foeniculum) under Normal, Drought Stress and Recovery Conditions

 Net photosynthesis rate (Pn), stomatal conductance (gs) and transpiration rate (E) of anise hyssop were measured during the four cloudless days, in reference to diurnal fluctuations of leaf temperature (Tleaf), leaf vapor pressure deficit (VPD leaf) and photosynthetic photon flux density (PPFD) in well watered (WW), stressed (S) and recovered (R) plants. An analysis of measured data showed tha...

متن کامل

Stomatal Density as a Selection Criterion for Developing Tea Varieties with High Physiological Efficiency

Stomata, the small opening in leaf connecting plant with atmosphere, play pivotal roles in global water and carbon cycles. Stomata regulate the two key important physiological functions viz. photosynthesis and transpiration and thus are crucial for performance of crop species in changing climatic conditions. Although environmental factors influence the density and size of stomata, the genetic c...

متن کامل

SlERF36, an EAR-motif-containing ERF gene from tomato, alters stomatal density and modulates photosynthesis and growth

The AP2 domain class of transcription factors is a large family of genes with various roles in plant development and adaptation but with very little functional information in plants other than Arabidopsis. Here, the characterization of an EAR motif-containing transcription factor, SlERF36, from tomato that affects stomatal density, conductance, and photosynthesis is described. Heterologous expr...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 67  شماره 

صفحات  -

تاریخ انتشار 2016